Lecture 21:
Turing Machines
Part 2 of 3



Outline for Today

« The Church-Turing Thesis
- Just how powertful are TMs?
« What Does it Mean to Solve a Problem?
- It’s more subtle than it looks.
 Recognizers and Deciders

- Two modes of problem-solving.



Recap from Last Time



Turing Machines

A Turing machine is a program that controls a
tape head as it moves around an infinite tape.

e There are six commands:

— Move direction

- Write symbol

— Goto label

— Return boolean

— If symbol command

— If Not symbol command

* Despite their limited vocabulary, TMs are
surprisingly powertul.



A Sample Turing Machine

« Here’s a sample TM.

It receives inputs over the
alphabet X = {3, b}.

 What strings does this TM
accept?

« Can you write a regex
that matches precisely the
strings this TM accepts?

Answer at
https://cs103.stanford.edu/pollev

Start:
If Not 'a' Return False

Loop:
Move Right
If Not Blank Goto Loop
Move Left
Move Left
If Not 'b' Return False

Return True



https://cs103.stanford.edu/pollev

What Can We Do With a TM?

 Last time, we saw TMs that

- check if a string has the form a"b~,
- check if a string has the same number of a’s and b’s, and
- sort a string of a’s and b’s.

« Here’s a list of some other things TMs can do; we’ll give
you these TMs with the starter files for PS8 this week.

- Check if a number is a Fibonacci number.

- Convert the number n into a string of n a’s.
- Check if a string is a tautonym (the same string repeated twice).
- So much more!

« This hints at the idea that TMs might be more powerful
than they look.



New Stuff!



Main Questions for Today:
Just how powertul are Turing machines?

What problems can you solve with a computer?



Just how powertul are Turing machines?



Real and “Ideal” Computers

* A real computer has finite memory: finite disk
space, finite RAM, etc.

 But as computers get more powerful, the
amount of memory available keeps increasing.

- Compare our first PCs to your laptops!

 An idealized computer is a computer with
unlimited RAM and disk space.

It functions just like a regular computer, but
never runs out of memory.



Theorem: Turing machines are equal in
power to idealized computers.

More specifically: any computation that
can be done on a TM can be done on an
idealized computer and vice-versa.



Key Idea: Two models of computation
are equally powerful if they can
simulate each other.



Simulating a TM

 The individual commands in a TM are simple and
perform only basic operations:

Move Write Goto Return If

« The memory for a TM can be thought of as a string
with some number keeping track of the current index.

 To simulate a TM, we need to
- see which line of the program we’re on,
- determine what command it is, and

- simulate that single command.

* Claim: This is reasonably straightforward to do on an
idealized computer.

- My “core” logic for the TM simulator is under fifty lines of
code, including comments.



Simulating a TM

 Because a computer can simulate each
individual TM instruction, an idealized
computer can do anything a TM can do.

 Key Ideas:

- Even the most complicated TM is made out
of individual instructions.

- If we can simulate those instructions, we
can simulate an arbitrarily complicated TM.



Simulating a Computer

 Programming languages provide a set of simple
constructs.

- Think things like variables, arrays, loops, functions,
classes, etc.

* You, the programmer, then combine these basic
constructs together to assemble larger
programs.

 Key Idea: A 'TM is powertul enough to simulate
each of these individual pieces. It’s therefore
powertul enough to simulate anything a real
computer can do.



A Leap of Faith

 Claim: A TM is powertful enough to simulate any
computer program that gets an input, processes
that input, then returns some result.

input | Computational @
Device @

* The resulting TM might be colossal, slow, or both,
but it would still faithfully simulate the computer.

« We're going to take this as an article of faith in
CS103. If you curious for more details, come talk
to me after class.



Can a TM Work With...

“cat pictures?”

Sure! A piclure is
just a 2D array of
colors, and a color
can be representfed
as a series ot

numbers,



Can a TM Work With...

" ° 24

It you think aboud

“cat videos?” i1, a video is just a
series ot pictures:

W gt iy B



Can a TM Work With...

“music?” Sure! Music is encoded as a
compressed wavetorm, That’s
just a list ot numbers,

“Generative AI?” Sure! That's just applying a
bunch of matrices and

nonlinear functions to some
input,



Just how powertul are Turing machines?



The Church-Turing Thesis claims that

every feasible method of computation
is either equivalent to or weaker than
a Turing machine.

“This is not a theorem - it is a
falsifiable scientific hypothesis.
And it has been thoroughly

tested!”
- Ryan Williams



Regular
Languages

Problems
Solvable by
Any Feasible
Computing
Machine

All Languages




Regular
Languages

wWhat's [l

heye?

Problems
Solvable by
Turing
Machines

All Languages




Time-Out for Announcements!



Problem Set 8

 Problem Set Seven was due today at 1:00PM.

- You can use a late day to extend the deadline to 1:00PM on
Saturday.

* Problem Set Eight goes out today. It’s due next Sunday at
1:00PM, but is designed so that it can be feasibly
completed by next Friday.

- Construct context-free grammars and explore their expressive
power.

- Dive deeper into the structure of languages and functions
between languages.

— Tinker with TMs and what it’s like to build all computation from
smaller pieces.

* You know the drill: come talk to us if you have any
questions, and let us know what we can do to help out.



Back to CS103!



Decidability and Recognizability



What problems can we solve with a computer?
.

what kind of
computer?



What problems can we solve with a computer?
A

What does it
mean to ‘solve’
a problem?



The Hailstone Sequence

* Consider the following procedure,
starting with some n € N, where n > 0O:

- If n =1, you are done.

- If nis even, setn =n/ 2.
- Otherwise, set n = 3n + 1.
- Repeat.

* Question: Given a natural number n > 0,
does this process terminate?



1

34 <«

52
40
2%

20

10

- If n =1, stop.

- If nis even, setn=n/ 2.
- Otherwise, setn = 3n + 1.
- Repeat.

16



The Hailstone Sequence

* Consider the following procedure, starting with
some n € N, where n > 0O:

If n =1, you are done.
If nis even, setn=n/ 2.

Otherwise, setn =3n + 1.

* Does the Hailstone Sequence terminate for...

Repeat.
n=»5s",
n=207?
n=717,?

n=27/7?

Answer at
https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

The Hailstone Sequence

* Consider the following procedure, starting with
some n € N, where n > 0O:

- If n =1, you are done.

- If niseven,setn=n/2.
- Otherwise, set n = 3n + 1.
- Repeat.

* Does the Hailstone Sequence terminate for...
- n=>5"7
- n =207
-n=77?
-n=277



The Hailstone Turing Machine

 Let 2 = {a} and consider the language

L ={a"| n> 0 and the hailstone
sequence terminates for n }.

« We can build a TM for L as follows:

If the input is ¢, reject.
While the string is not a:

If the input has even length, halve the length of
the string.

If the input has odd length, triple the length of
the string and append a a.

Accept.



Does this Turing machine
always eventually stop running?



The Collatz Conjecture

* It is unknown whether this process will
terminate for all natural numbers.

- No one knows whether this TM always
terminates!

* The conjecture (unproven claim) that the
hailstone sequence always terminates is
called the Collatz Conjecture.

« Paul Erdos is reported to have said
“mathematics may not be ready for such
problems.”



An Important Observation

* Unlike finite automata, which
automatically halt aftter all the input is
read, TMs keep running until they
explicitly return true or return false.

* As a result, it’s possible for a TM to run
forever without accepting or rejecting.

« What does “solving” a problem with a TM
mean when a TM might run forever
without giving an answer?



Very Important Terminology

Let M be a Turing machine and w be a string.
M accepts w if it returns true on w.
M rejects w if it returns false on w.

M loops on w (or loops infinitely) if when run on w it neither
returns true nor returns false.

M does not accept w if it either rejects w or loops on w.
M does not reject w w if it either accepts w or loops on w.

M halts on w if it accepts w or rejects w.

does not reject | Accept x

Loop halts

does not accept - - “




Recognizers and Recognizability

- ATM M is a recognizer for a language L over 2 when
Vw e 2*. (we€ L o M accepts w).

* A language L is recognizable when there is a
recognizer for L.

 If you are absolutely certain that w € L, then running a
recognizer for L on w will (eventually) confirm this.

- Eventually, M will accept w.

* If you don’t know whether w € L, running M on w may
never tell you anything.

- M might loop on w - but you can’t differentiate between “it’ll
accept if you wait longer” and “it will never come back with
an answer.”

* Does this feel like “solving a problem” to you?



Recognizers and Recognizability

* Our hailstone TM M is a recognizer for

L ={a"| n >0 and the hailstone
sequence terminates for n }.
« Why?
- If the sequence terminates starting at n, then M
accepts a".

- If the sequence doesn’t terminate, then M loops on a”
and thus doesn’t accept a".

« What does that mean?

- If you (somehow) know the sequence terminates for n,
then M will eventually confirm this.

- If you don’t know, then M might not tell you anything.



Recognizers and Recognizability

« Earlier this quarter you explored sums of
five cubes. Now, let’s talk about sums of
three cubes.

* Are there integers x, y, and z where...
-x3+y+22=107?
- x>+ Y +22=117
- x>+ Yy + 23 =127
-x3+ y+22=137

Answer at
hitps://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Recognizers and Recognizability

« Earlier this quarter you explored sums of
five cubes. Now, let’s talk about sums of
three cubes.

* Are there integers x, y, and z where...
-x3+y+22=107?
- x>+ Y +22=117
- x>+ Yy + 23 =127
-x3+ y+22=137




Recognizers and Recognizability

* Surprising fact: until 2019, no one knew
whether there were integers x, y, and z where

x>+ y° + 2° = 33.

* A heavily optimized computer search found this
answer:

x = 8,366,128,975,287,528
y =-8,778,405,442,8062,239
z=-2,736,111,4638,307,040

 As of November 2025, no one knows whether
there are integers x, y, and z where

x>+ y + 2°=114.



Recognizers and Recognizability

* Consider the language
L={a"|dxeZ. dyeZ. 1z€eZ. 3+ y +23=n}

 Here’s pseudocode for a recognizer to see whether such

a triple exists:

for max = 0, 1, 2, ..
for x from -max to +max:
for y from -max to +max:
for z from -max to +max:
if X3+ y> + z2 = n: return true

 If you somehow know there was a triple x, y, and z

where x3 + y* + 2° = n, running this program will

(eventually) convince you of this.

« If you aren’t sure whether a triple exists, this recognizer
might not be useful to you.



Recognizers and Recognizability

* The class RE consists of all recognizable languages.
* Formally speaking:
RE = { L |Lisalanguage and there’s arecognizerforL }

* You can think of RE as “all problems with yes/no
answers where “yes” answers can be confirmed by a
computer.”

- Glven a recognizable language L and a string w € L, running a
recognizer for L on w will eventually confirm w € L.

- The recognizer will never have a “false positive” of saying
that a string is in L. when it isn’t.

« This is a “weak” notion of solving a problem.
 Is there a “stronger” one?



Deciders and Decidability

« Some (but not all!) TMs halt on all inputs.

 Given a TM M that always halts, the statement
“M does not accept w” means “M rejects w.”

does not reject -~

does not accept -

~ halts (always)




Recognizers and Recognizability

« ATM M is a recognizer for a language L over X when

Vwe 2X* (welL o M acceptsw)

A language L is recognizable when there’s a recognizer for it.



Deciders and Decidability

A TM M is a decider for a language L over X when
Vw € 2*, M halts on w.
Vwe 2X* (welL o M acceptsw)
A language L is decidable when there is a decider for it.
Equivalently:

- A decider M for a language L accepts all strings in L and rejects
all strings not in L.

- A decider M for a language L is a recognizer for L that halts on
all inputs.

Intuitively, if you don’t know whether w € L, running M on w
will “create new knowledge” by telling you the answer.

This is a “strong” notion of “solving a problem.”



Deciders and Decidability

 The class R consists of all decidable languages.
 Formally speaking:
R = { L | L is alanguage and there’s a decider for L }

* You can think of R as “all problems with yes/no
answers that can be fully solved by computers.”

- Given a decidable language, run a decider for L. and see what
happens.

- Think of this as “knowledge creation” - if you don’t know
whether a string is in L, running the decider will, given
enough time, tell you.

* The class R contains all the regular languages, all the
context-free languages, most of CS161, etc.

» This is a “strong” notion of solving a problem.



R and RE Languages

Every decider for L is also a recognizer for L.
This means that R C RE.
Hugely important theoretical question:

R = RE

That is, if you can just confirm “yes” answers to
a problem, can you necessarily solve that
problem?



Which Picture is Correct?

Regular
CFLs

All Languages



Which Picture is Correct?

/ A\

Regular R

N y.

All Languages



Unanswered Questions

 Why exactly is RE an interesting class ot
problems?

 What does the R = RE question mean?
 [s R = RE?

 What lies beyond R and RE?

* Find out next week!



Next Time

« FEmergent Properties

- Larger phenomena made of smaller parts.
 Universal Machines

- A single, “most powertul” computer.
 Self-Reference

- Programs that ask questions about
themselves.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

